🎒 Midterm Season Sale: 50% Off !
Get Deal
Developer Tools

ChatGPT Humanizer API: Integrating AI Text Transformation Into Your Workflow

By Text Polish Team
December 10, 2024
7 min read
Learn how to integrate ChatGPT humanizer APIs into your development workflow. Complete guide to programmatic AI text humanization for developers and businesses.

ChatGPT Humanizer API: Integrating AI Text Transformation Into Your Workflow

As AI content generation scales up across industries, developers and businesses need programmatic solutions for humanizing AI text. ChatGPT humanizer APIs provide the automation and integration capabilities required for enterprise-level content transformation. This guide covers everything you need to know about integrating humanizer APIs into your workflow.

Why Use a ChatGPT Humanizer API?

Automation Benefits

  • Bulk processing of thousands of documents
  • Real-time humanization for dynamic content
  • Workflow integration with existing systems
  • Consistent quality across all content
  • Business Applications

  • Content marketing at scale
  • Academic paper processing
  • E-commerce product descriptions
  • Customer communication enhancement
  • Top ChatGPT Humanizer APIs in 2025

    1. Text-Polish API

    Endpoint: https://api.text-polish.com/humanize Pricing: $0.001 per word Features:
  • RESTful API architecture
  • Real-time processing
  • Batch processing capabilities
  • Multiple humanization modes
  • Built-in quality scoring
  • Authentication:
    ``javascript
    headers: {
      'Authorization': 'Bearer YOUR_API_KEY',
      'Content-Type': 'application/json'
    }
    `
    Basic Usage:
    `javascript
    const response = await fetch("https://api.text-polish.com/humanize", {
      method: "POST",
      headers: {
        Authorization: "Bearer YOUR_API_KEY",
        "Content-Type": "application/json",
      },
      body: JSON.stringify({
        text: "Your ChatGPT generated content here",
        mode: "academic", // academic, creative, business
        strength: "medium", // light, medium, heavy
      }),
    });
    

    const result = await response.json(); console.log(result.humanizedText); `

    2. Undetectable.ai API

    Endpoint:
    https://api.undetectable.ai/submit Pricing: $0.002 per word Features:
  • Async processing for large documents
  • Multiple output variations
  • Built-in AI detection testing
  • Webhook support for notifications
  • 3. StealthWriter API

    Endpoint:
    https://api.stealthwriter.ai/humanize Pricing: $0.0015 per word Features:
  • Fast processing times
  • SEO optimization options
  • Multi-language support
  • Custom style profiles
  • Integration Patterns and Examples

    1. Node.js Integration

    Installing Dependencies:
    `bash
    npm install axios dotenv
    `
    Basic Implementation:
    `javascript
    const axios = require("axios");
    require("dotenv").config();
    

    class ChatGPTHumanizer { constructor(apiKey) { this.apiKey = apiKey; this.baseURL = "https://api.text-polish.com"; }

    async humanize(text, options = {}) { try { const response = await axios.post( ${this.baseURL}/humanize, { text, mode: options.mode || "academic", strength: options.strength || "medium", preserveCitations: options.preserveCitations || true, }, { headers: { Authorization: Bearer ${this.apiKey}, "Content-Type": "application/json", }, } );

    return response.data; } catch (error) { console.error("Humanization failed:", error.response?.data); throw error; } }

    async batchHumanize(texts, options = {}) { const promises = texts.map((text) => this.humanize(text, options)); return Promise.all(promises); } }

    // Usage const humanizer = new ChatGPTHumanizer(process.env.TEXT_POLISH_API_KEY);

    async function processContent() { const content = "Your AI-generated content here..."; const result = await humanizer.humanize(content, { mode: "academic", strength: "medium", });

    console.log("Original:", content); console.log("Humanized:", result.humanizedText); console.log("Quality Score:", result.qualityScore); } `

    2. Python Integration

    Installing Dependencies:
    `bash
    pip install requests python-dotenv
    `
    Implementation:
    `python
    import requests
    import os
    from dotenv import load_dotenv
    

    load_dotenv()

    class ChatGPTHumanizer: def __init__(self, api_key): self.api_key = api_key self.base_url = "https://api.text-polish.com" self.headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" }

    def humanize(self, text, mode="academic", strength="medium"): payload = { "text": text, "mode": mode, "strength": strength, "preserveCitations": True }

    response = requests.post( f"{self.base_url}/humanize", json=payload, headers=self.headers )

    if response.status_code == 200: return response.json() else: raise Exception(f"API Error: {response.status_code} - {response.text}")

    def batch_humanize(self, texts, options): results = [] for text in texts: result = self.humanize(text, options) results.append(result) return results

    Usage

    humanizer = ChatGPTHumanizer(os.getenv("TEXT_POLISH_API_KEY"))

    content = "Your AI-generated content here..." result = humanizer.humanize( content, mode="academic", strength="medium" )

    print(f"Original: {content}") print(f"Humanized: {result['humanizedText']}") print(f"Quality Score: {result['qualityScore']}") `

    3. PHP Integration

    `php
    class ChatGPTHumanizer {
        private $apiKey;
        private $baseURL;

    public function __construct($apiKey) { $this->apiKey = $apiKey; $this->baseURL = 'https://api.text-polish.com'; }

    public function humanize($text, $options = []) { $data = [ 'text' => $text, 'mode' => $options['mode'] ?? 'academic', 'strength' => $options['strength'] ?? 'medium', 'preserveCitations' => $options['preserveCitations'] ?? true ];

    $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, $this->baseURL . '/humanize'); curl_setopt($ch, CURLOPT_POST, true); curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($data)); curl_setopt($ch, CURLOPT_RETURNTRANSFER, true); curl_setopt($ch, CURLOPT_HTTPHEADER, [ 'Authorization: Bearer ' . $this->apiKey, 'Content-Type: application/json' ]);

    $response = curl_exec($ch); $httpCode = curl_getinfo($ch, CURLINFO_HTTP_CODE); curl_close($ch);

    if ($httpCode === 200) { return json_decode($response, true); } else { throw new Exception("API Error: $httpCode - $response"); } } }

    // Usage $humanizer = new ChatGPTHumanizer(getenv('TEXT_POLISH_API_KEY')); $result = $humanizer->humanize("Your content here", [ 'mode' => 'academic', 'strength' => 'medium' ]);

    echo "Humanized: " . $result['humanizedText']; ?> `

    Advanced Implementation Strategies

    1. Async Processing for Large Documents

    `javascript
    class AsyncHumanizer {
      async processLargeDocument(document, chunkSize = 1000) {
        const chunks = this.splitIntoChunks(document, chunkSize);
        const processedChunks = [];
    

    for (const chunk of chunks) { const result = await this.humanize(chunk.text); processedChunks.push({ ...chunk, humanizedText: result.humanizedText, });

    // Rate limiting await this.delay(100); }

    return this.reassembleDocument(processedChunks); }

    splitIntoChunks(text, maxWords) { // Implementation for splitting text while preserving context const sentences = text.split(". "); const chunks = []; let currentChunk = "";

    for (const sentence of sentences) { if ((currentChunk + sentence).split(" ").length <= maxWords) { currentChunk += sentence + ". "; } else { if (currentChunk) { chunks.push({ text: currentChunk.trim() }); currentChunk = sentence + ". "; } } }

    if (currentChunk) { chunks.push({ text: currentChunk.trim() }); }

    return chunks; }

    delay(ms) { return new Promise((resolve) => setTimeout(resolve, ms)); } } `

    2. Quality Monitoring and Fallback

    `javascript
    class RobustHumanizer {
      constructor() {
        this.apis = [
          new TextPolishAPI(process.env.TEXT_POLISH_KEY),
          new UndetectableAPI(process.env.UNDETECTABLE_KEY),
          new StealthWriterAPI(process.env.STEALTH_KEY),
        ];
      }
    

    async humanizeWithFallback(text, qualityThreshold = 0.8) { for (const api of this.apis) { try { const result = await api.humanize(text);

    if (result.qualityScore >= qualityThreshold) { return result; } } catch (error) { console.warn(API ${api.constructor.name} failed:, error.message); continue; } }

    throw new Error( "All humanization APIs failed or quality threshold not met" ); } } `

    3. Caching and Performance Optimization

    `javascript
    const Redis = require("redis");
    const crypto = require("crypto");
    

    class CachedHumanizer { constructor(apiKey, redisConfig) { this.humanizer = new ChatGPTHumanizer(apiKey); this.redis = Redis.createClient(redisConfig); }

    generateCacheKey(text, options) { const content = text + JSON.stringify(options); return crypto.createHash("md5").update(content).digest("hex"); }

    async humanize(text, options = {}, cacheTTL = 3600) { const cacheKey = this.generateCacheKey(text, options);

    // Check cache first const cached = await this.redis.get(cacheKey); if (cached) { return JSON.parse(cached); }

    // Process and cache result const result = await this.humanizer.humanize(text, options); await this.redis.setex(cacheKey, cacheTTL, JSON.stringify(result));

    return result; } } `

    Webhook Integration for Async Processing

    Setting Up Webhooks

    `javascript
    const express = require("express");
    const app = express();
    

    // Webhook endpoint for processing completion app.post("/webhook/humanization-complete", (req, res) => { const { jobId, status, result, error } = req.body;

    if (status === "completed") { console.log(Job ${jobId} completed successfully); // Process the humanized result handleCompletedHumanization(jobId, result); } else if (status === "failed") { console.error(Job ${jobId} failed:, error); // Handle error case handleFailedHumanization(jobId, error); }

    res.status(200).json({ received: true }); });

    // Submit async job async function submitAsyncJob(text, webhookURL) { const response = await fetch("https://api.text-polish.com/humanize/async", { method: "POST", headers: { Authorization: "Bearer " + apiKey, "Content-Type": "application/json", }, body: JSON.stringify({ text, webhookURL, mode: "academic", }), });

    const { jobId } = await response.json(); return jobId; } `

    Error Handling and Rate Limiting

    Comprehensive Error Handling

    `javascript
    class ResilientHumanizer {
      constructor(apiKey) {
        this.apiKey = apiKey;
        this.rateLimitDelay = 100; // ms between requests
        this.maxRetries = 3;
      }
    

    async humanizeWithRetry(text, options = {}, attempt = 1) { try { await this.delay(this.rateLimitDelay);

    const response = await fetch("https://api.text-polish.com/humanize", { method: "POST", headers: { Authorization: Bearer ${this.apiKey}, "Content-Type": "application/json", }, body: JSON.stringify({ text, ...options }), });

    if (response.status === 429) { // Rate limited - wait and retry const retryAfter = response.headers.get("Retry-After") || 60; await this.delay(retryAfter * 1000); return this.humanizeWithRetry(text, options, attempt); }

    if (!response.ok) { throw new Error(HTTP ${response.status}: ${await response.text()}); }

    return await response.json(); } catch (error) { if (attempt < this.maxRetries) { console.warn(Attempt ${attempt} failed, retrying...); await this.delay(1000 * attempt); // Exponential backoff return this.humanizeWithRetry(text, options, attempt + 1); }

    throw error; } } } ``

    Best Practices for API Integration

    1. Security Considerations

  • Store API keys securely using environment variables
  • Use HTTPS for all API communications
  • Implement proper authentication and authorization
  • Monitor API usage and detect anomalies
  • 2. Performance Optimization

  • Implement caching for repeated content
  • Use connection pooling for high-volume processing
  • Batch multiple requests when supported
  • Monitor and optimize processing times
  • 3. Quality Assurance

  • Always validate API responses
  • Implement fallback mechanisms for API failures
  • Monitor quality scores and success rates
  • Test with various content types and lengths
  • 4. Cost Management

  • Monitor API usage and costs
  • Implement usage limits and alerts
  • Cache results to reduce redundant calls
  • Choose appropriate processing modes for different content types
  • Conclusion

    ChatGPT humanizer APIs provide powerful automation capabilities for businesses and developers working with AI-generated content at scale. By following the integration patterns and best practices outlined in this guide, you can build robust, efficient systems for humanizing AI text while maintaining quality and managing costs.

    Remember to always test thoroughly, implement proper error handling, and monitor your API usage to ensure reliable performance in production environments. As AI detection technology continues to evolve, having a flexible, well-architected integration will allow you to adapt and scale your humanization workflows effectively.

    Ready to Humanize Your AI Content?

    Transform your AI-generated text into natural, human-like content that bypasses all detection tools.

    Try TextPolish Free →
    Share this article: Twitter LinkedIn

    More Articles