ChatGPT Humanizer API: Integrating AI Text Transformation Into Your Workflow
ChatGPT Humanizer API: Integrating AI Text Transformation Into Your Workflow
As AI content generation scales up across industries, developers and businesses need programmatic solutions for humanizing AI text. ChatGPT humanizer APIs provide the automation and integration capabilities required for enterprise-level content transformation. This guide covers everything you need to know about integrating humanizer APIs into your workflow.
Why Use a ChatGPT Humanizer API?
Automation Benefits
Business Applications
Top ChatGPT Humanizer APIs in 2025
1. Text-Polish API
Endpoint:https://api.text-polish.com/humanize
Pricing: $0.001 per word
Features:
``javascript
headers: {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
}
`
Basic Usage:
`javascript const response = await fetch("https://api.text-polish.com/humanize", { method: "POST", headers: { Authorization: "Bearer YOUR_API_KEY", "Content-Type": "application/json", }, body: JSON.stringify({ text: "Your ChatGPT generated content here", mode: "academic", // academic, creative, business strength: "medium", // light, medium, heavy }), });`const result = await response.json(); console.log(result.humanizedText);
2. Undetectable.ai API
Endpoint: https://api.undetectable.ai/submit
Pricing: $0.002 per word
Features:
Async processing for large documents
Multiple output variations
Built-in AI detection testing
Webhook support for notifications
3. StealthWriter API
Endpoint: https://api.stealthwriter.ai/humanize
Pricing: $0.0015 per word
Features:
Fast processing times
SEO optimization options
Multi-language support
Custom style profiles
Integration Patterns and Examples
1. Node.js Integration
Installing Dependencies:
`bash
npm install axios dotenv
`
Basic Implementation:
`javascript
const axios = require("axios");
require("dotenv").config();
class ChatGPTHumanizer {
constructor(apiKey) {
this.apiKey = apiKey;
this.baseURL = "https://api.text-polish.com";
}
async humanize(text, options = {}) {
try {
const response = await axios.post(
${this.baseURL}/humanize,
{
text,
mode: options.mode || "academic",
strength: options.strength || "medium",
preserveCitations: options.preserveCitations || true,
},
{
headers: {
Authorization: Bearer ${this.apiKey},
"Content-Type": "application/json",
},
}
);
return response.data;
} catch (error) {
console.error("Humanization failed:", error.response?.data);
throw error;
}
}
async batchHumanize(texts, options = {}) {
const promises = texts.map((text) => this.humanize(text, options));
return Promise.all(promises);
}
}
// Usage
const humanizer = new ChatGPTHumanizer(process.env.TEXT_POLISH_API_KEY);
async function processContent() {
const content = "Your AI-generated content here...";
const result = await humanizer.humanize(content, {
mode: "academic",
strength: "medium",
});
console.log("Original:", content);
console.log("Humanized:", result.humanizedText);
console.log("Quality Score:", result.qualityScore);
}
`
2. Python Integration
Installing Dependencies:
`bash
pip install requests python-dotenv
`
Implementation:
`python
import requests
import os
from dotenv import load_dotenv
load_dotenv()
class ChatGPTHumanizer:
def __init__(self, api_key):
self.api_key = api_key
self.base_url = "https://api.text-polish.com"
self.headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
def humanize(self, text, mode="academic", strength="medium"):
payload = {
"text": text,
"mode": mode,
"strength": strength,
"preserveCitations": True
}
response = requests.post(
f"{self.base_url}/humanize",
json=payload,
headers=self.headers
)
if response.status_code == 200:
return response.json()
else:
raise Exception(f"API Error: {response.status_code} - {response.text}")
def batch_humanize(self, texts, options):
results = []
for text in texts:
result = self.humanize(text, options)
results.append(result)
return results
Usage
humanizer = ChatGPTHumanizer(os.getenv("TEXT_POLISH_API_KEY"))
content = "Your AI-generated content here..."
result = humanizer.humanize(
content,
mode="academic",
strength="medium"
)
print(f"Original: {content}")
print(f"Humanized: {result['humanizedText']}")
print(f"Quality Score: {result['qualityScore']}")
`
3. PHP Integration
`php
class ChatGPTHumanizer {
private $apiKey;
private $baseURL;
public function __construct($apiKey) {
$this->apiKey = $apiKey;
$this->baseURL = 'https://api.text-polish.com';
}
public function humanize($text, $options = []) {
$data = [
'text' => $text,
'mode' => $options['mode'] ?? 'academic',
'strength' => $options['strength'] ?? 'medium',
'preserveCitations' => $options['preserveCitations'] ?? true
];
$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $this->baseURL . '/humanize');
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($data));
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_HTTPHEADER, [
'Authorization: Bearer ' . $this->apiKey,
'Content-Type: application/json'
]);
$response = curl_exec($ch);
$httpCode = curl_getinfo($ch, CURLINFO_HTTP_CODE);
curl_close($ch);
if ($httpCode === 200) {
return json_decode($response, true);
} else {
throw new Exception("API Error: $httpCode - $response");
}
}
}
// Usage
$humanizer = new ChatGPTHumanizer(getenv('TEXT_POLISH_API_KEY'));
$result = $humanizer->humanize("Your content here", [
'mode' => 'academic',
'strength' => 'medium'
]);
echo "Humanized: " . $result['humanizedText'];
?>
`
Advanced Implementation Strategies
1. Async Processing for Large Documents
`javascript
class AsyncHumanizer {
async processLargeDocument(document, chunkSize = 1000) {
const chunks = this.splitIntoChunks(document, chunkSize);
const processedChunks = [];
for (const chunk of chunks) {
const result = await this.humanize(chunk.text);
processedChunks.push({
...chunk,
humanizedText: result.humanizedText,
});
// Rate limiting
await this.delay(100);
}
return this.reassembleDocument(processedChunks);
}
splitIntoChunks(text, maxWords) {
// Implementation for splitting text while preserving context
const sentences = text.split(". ");
const chunks = [];
let currentChunk = "";
for (const sentence of sentences) {
if ((currentChunk + sentence).split(" ").length <= maxWords) {
currentChunk += sentence + ". ";
} else {
if (currentChunk) {
chunks.push({ text: currentChunk.trim() });
currentChunk = sentence + ". ";
}
}
}
if (currentChunk) {
chunks.push({ text: currentChunk.trim() });
}
return chunks;
}
delay(ms) {
return new Promise((resolve) => setTimeout(resolve, ms));
}
}
`
2. Quality Monitoring and Fallback
`javascript
class RobustHumanizer {
constructor() {
this.apis = [
new TextPolishAPI(process.env.TEXT_POLISH_KEY),
new UndetectableAPI(process.env.UNDETECTABLE_KEY),
new StealthWriterAPI(process.env.STEALTH_KEY),
];
}
async humanizeWithFallback(text, qualityThreshold = 0.8) {
for (const api of this.apis) {
try {
const result = await api.humanize(text);
if (result.qualityScore >= qualityThreshold) {
return result;
}
} catch (error) {
console.warn(
API ${api.constructor.name} failed:, error.message);
continue;
}
}
throw new Error(
"All humanization APIs failed or quality threshold not met"
);
}
}
`
3. Caching and Performance Optimization
`javascript
const Redis = require("redis");
const crypto = require("crypto");
class CachedHumanizer {
constructor(apiKey, redisConfig) {
this.humanizer = new ChatGPTHumanizer(apiKey);
this.redis = Redis.createClient(redisConfig);
}
generateCacheKey(text, options) {
const content = text + JSON.stringify(options);
return crypto.createHash("md5").update(content).digest("hex");
}
async humanize(text, options = {}, cacheTTL = 3600) {
const cacheKey = this.generateCacheKey(text, options);
// Check cache first
const cached = await this.redis.get(cacheKey);
if (cached) {
return JSON.parse(cached);
}
// Process and cache result
const result = await this.humanizer.humanize(text, options);
await this.redis.setex(cacheKey, cacheTTL, JSON.stringify(result));
return result;
}
}
`
Webhook Integration for Async Processing
Setting Up Webhooks
`javascript
const express = require("express");
const app = express();
// Webhook endpoint for processing completion
app.post("/webhook/humanization-complete", (req, res) => {
const { jobId, status, result, error } = req.body;
if (status === "completed") {
console.log(
Job ${jobId} completed successfully);
// Process the humanized result
handleCompletedHumanization(jobId, result);
} else if (status === "failed") {
console.error(Job ${jobId} failed:, error);
// Handle error case
handleFailedHumanization(jobId, error);
}
res.status(200).json({ received: true });
});
// Submit async job
async function submitAsyncJob(text, webhookURL) {
const response = await fetch("https://api.text-polish.com/humanize/async", {
method: "POST",
headers: {
Authorization: "Bearer " + apiKey,
"Content-Type": "application/json",
},
body: JSON.stringify({
text,
webhookURL,
mode: "academic",
}),
});
const { jobId } = await response.json();
return jobId;
}
`
Error Handling and Rate Limiting
Comprehensive Error Handling
`javascript
class ResilientHumanizer {
constructor(apiKey) {
this.apiKey = apiKey;
this.rateLimitDelay = 100; // ms between requests
this.maxRetries = 3;
}
async humanizeWithRetry(text, options = {}, attempt = 1) {
try {
await this.delay(this.rateLimitDelay);
const response = await fetch("https://api.text-polish.com/humanize", {
method: "POST",
headers: {
Authorization:
Bearer ${this.apiKey},
"Content-Type": "application/json",
},
body: JSON.stringify({ text, ...options }),
});
if (response.status === 429) {
// Rate limited - wait and retry
const retryAfter = response.headers.get("Retry-After") || 60;
await this.delay(retryAfter * 1000);
return this.humanizeWithRetry(text, options, attempt);
}
if (!response.ok) {
throw new Error(
HTTP ${response.status}: ${await response.text()});
}
return await response.json();
} catch (error) {
if (attempt < this.maxRetries) {
console.warn(
Attempt ${attempt} failed, retrying...);
await this.delay(1000 * attempt); // Exponential backoff
return this.humanizeWithRetry(text, options, attempt + 1);
}
throw error;
}
}
}
``
Best Practices for API Integration
1. Security Considerations
2. Performance Optimization
3. Quality Assurance
4. Cost Management
Conclusion
ChatGPT humanizer APIs provide powerful automation capabilities for businesses and developers working with AI-generated content at scale. By following the integration patterns and best practices outlined in this guide, you can build robust, efficient systems for humanizing AI text while maintaining quality and managing costs.
Remember to always test thoroughly, implement proper error handling, and monitor your API usage to ensure reliable performance in production environments. As AI detection technology continues to evolve, having a flexible, well-architected integration will allow you to adapt and scale your humanization workflows effectively.
Ready to Humanize Your AI Content?
Transform your AI-generated text into natural, human-like content that bypasses all detection tools.
Try TextPolish Free →